Metric

Contains

The metric values for the training and test sets.

The table below lists the names of parameters that define the metric values to output. The values of all functions defined by these parameters are output.
CLI parametersPython parametersR parameters

--custom-metric

custom_metric

custom_loss

--loss-function

loss_functionloss_function

--eval-metric

eval_metriceval_metric
Format
  • The first row describes the data provided in the file.

    Format:

    iter<\t><loss 1><loss 2><\t>...<\t><loss N>
  • The metric names are expanded by colon-separated numbers if several test datasets are input. The numbers correspond to the serial number of the input dataset.
  • All the rows except the first contain information for the specific iteration of building the tree.

    Format:

    <tree index><\t><loss 1><loss 2><\t>...<\t><loss N>
Examples
iter<\t>Logloss<\t>AUC
0<\t>0.6637258841<\t>0.8800403474
1<\t>0.6358649829<\t>0.8898645092
2<\t>0.6118586328<\t>0.8905880184
3<\t>0.5882755767<\t>0.8911104564
4<\t>0.5665035887<\t>0.8933460724
The output for three input test datasets:
iter<\t>RMSE<\t>RMSE:1<\t>RMSE:2
0<\t>0.114824346<\t>0.1105841934<\t>0.08683344953
1<\t>0.1136556268<\t>0.1095536596<\t>0.08584400666
2<\t>0.1125784149<\t>0.10852689<\t>0.08494974738
3<\t>0.1114784956<\t>0.1075251632<\t>0.08401943147
4<\t>0.1103751142<\t>0.106557555<\t>0.08312388916